首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1436篇
  免费   102篇
  国内免费   3篇
  2023年   17篇
  2022年   13篇
  2021年   74篇
  2020年   37篇
  2019年   48篇
  2018年   62篇
  2017年   40篇
  2016年   72篇
  2015年   64篇
  2014年   95篇
  2013年   112篇
  2012年   100篇
  2011年   111篇
  2010年   52篇
  2009年   62篇
  2008年   66篇
  2007年   69篇
  2006年   42篇
  2005年   52篇
  2004年   35篇
  2003年   41篇
  2002年   34篇
  2001年   15篇
  2000年   22篇
  1999年   12篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   10篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1991年   9篇
  1990年   6篇
  1989年   14篇
  1988年   10篇
  1987年   8篇
  1986年   4篇
  1985年   9篇
  1984年   6篇
  1983年   9篇
  1982年   6篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   5篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
  1963年   3篇
排序方式: 共有1541条查询结果,搜索用时 15 毫秒
991.
Epoxyeicosatrienoic acid (EET) and thromboxane A(2) are arachidonic acid derivatives. The former has initially been defined as an epithelium-derived hyperpolarizing factor displaying broncho-relaxing and anti-inflammatory properties, as recently demonstrated, whereas thromboxane A(2) induces vaso- and bronchoconstriction upon binding to thromboxane-prostanoid (TP)-receptor. EETs, however, are quickly degraded by the soluble epoxide hydrolase (sEH) into inactive diol compounds. The aim of this study was to investigate the effects of 14,15-EET on TP-receptor activation in human bronchi. Tension measurements performed on native bronchi from various species, acutely treated with increasing 14,15-EET concentrations, revealed specific and concentration-dependent relationships as well as a decrease in the tension induced by 30 nM U-46619, used as a synthetic TP-receptor agonist. Interestingly, acute treatments with 3 μM N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, an epoxygenase inhibitor, which minimizes endogenous production of EET, resulted in an increased reactivity to U-46619. Furthermore, we demonstrated that chronic treatments with trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a sEH inhibitor, reduced human bronchi reactivity to U-46619. During our tension measurements, we also observed that human bronchi generated small-amplitude contractions; these spontaneous activities were reduced upon acute 14,15-EET treatments in the presence of t-AUCB. Altogether, these data demonstrate that endogenous and exogenous 14,15-EET could interfere with the activation of TP-receptors as well as with spontaneous oscillations in human airway smooth muscle tissues.  相似文献   
992.
993.
Carboxymethyl-glucan (CM-G) is a soluble derivative from Saccharomyces cerevisiae (1 → 3)(1 → 6)-β-D-glucan. The protective efficiency of CM-G against DNA damage in cells from patients with advanced prostate cancer (PCa), and undergoing Androgen Deprivation Therapy (ADT), was evaluated. DNA damage scores were obtained by the comet assay, both before and after treatment with CM-G. The reduction in DNA damage, ranging from 18% to 87%, with an average of 59%, was not related to the increased number of leukocytes in peripheral blood. The results demonstrate for the first time the protective effect of CM-G against DNA damage in patients with advanced PCa. Among smokers, three presented the highest reduction in DNA damage after treatment with CM-G. There was no observable relationship between DNA damage scores before and after treatment, and age, alcoholism and radiotherapy.  相似文献   
994.
The aim of this study was the preparation, optimization, and in vitro characterization of insulin nanoparticles composed of methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4-pyridinyl), and methylated N-(benzyl) chitosan. Three types of derivatives were synthesized by the Schiff base reaction followed by quaternization. Nanoparticles were prepared by the polyelectrolyte complexation method. Experimental design D-optimal response surface methodology was used for the optimization of the nanoparticles. Independent variables were pH of polymer solution, concentration ratio of polymer/insulin, and also polymer type. Dependent variables include size, zeta potential, polydispersity index (PdI), and entrapment efficiency (EE%). Optimized nanoparticles were studied morphologically by transmission electron microscopy (TEM), and in vitro release of insulin from nanoparticles were determined under phosphate buffer (pH = 6.8) condition. Although a quadratic model has been chosen to fit the responses for size, PdI, and EE%, the zeta potential of the particles has been best fitted to 2-FI model. The optimized nanoparticles were characterized. The size of the particles were found to be 346, 318, and 289 nm; zeta potentials were 28.5, 27.7, and 22.2 mV; PdI of particles were 0.305, 0.333, and 0.437; and calculated EE% were 70.3%, 84.5%, and 69.2%, for methylated (aminobenzyl), methylated (pyridinyl), and methylated (benzyl) chitosan nanoparticles, respectively. TEM images show separated and non-aggregated nanoparticles with sub-spherical shapes and smooth surfaces. An in vitro release study of the prepared nanoparticles showed that the cumulative percentage of insulin released from the nanoparticles were 47.1%, 38%, and 68.7% for (aminobenzyl), (pyridinyl), and (benzyl) chitosan, respectively, within 300 min.  相似文献   
995.
Henoch-Schonlein Purpura (HSP) is a small vessel vasculitis mediated by IgA-immune complex deposition. It is characterized by the clinical tetrad of non-thrombocytopenic palpable purpura, abdominal pain, arthritis and renal involvement. Pathologically, it can be considered a form of immune complex-mediated leukocytoclastic vasculitis (LCV) involving the skin and other organs. Though it primarily affects children (over 90% of cases), the occurrence in adults has been rarely reported. Management often involves the use of immunomodulatory or immune-suppressive regimens.  相似文献   
996.
In order to enhance the efficacy of small antisense molecules, we examined a series of antisense oligonucleotides derivatized with functional groups designed to enable them to hydrolyze their RNA target. Solid phase synthetic methods were used to prepare imidazole-derivatized antisense oligo-2'-O-methylribonucleotides. Upon binding, these oligonucleotides create internal bulged bases in the target RNA that serve as sites for hydrolysis. We observed that an oligonucleotide derivatized with a side chain containing two imidazole groups was capable of hydrolyzing 58% of its RNA target when incubated with the target for 48 hours at 37°C and physiological pH.  相似文献   
997.
The need to find biomarkers for hepatobiliary diseases including cholangiocarcinoma (CCA) has led to an interest in using bile as a proximal fluid in biomarker discovery experiments, although there are inherent challenges both in its acquisition and analysis. The study described here greatly extends previous studies that have started to characterise the bile proteome. Bile from four patients with hilar CCA was depleted of albumin and immunoglobulin G and analysed by GeLC-MS/MS. The number of proteins identified per bile sample was between 378 and 741. Overall, the products of 813 unique genes were identified, considerably extending current knowledge of the malignant bile proteome. Of these, 268 were present in at least 3 out of 4 patients. This data set represents the largest catalogue of bile proteins to date and together with other studies in the literature constitutes an important prelude to the potential promise of expression proteomics and subsequent validation studies in CCA biomarker discovery.  相似文献   
998.
Abdul-Rahman MF  Qiu A  Sim K 《PloS one》2011,6(4):e18652
Limbic circuitry disruptions have been implicated in the psychopathology and cognitive deficits of schizophrenia, which may involve white matter disruptions of the major tracts of the limbic system, including the fornix and the cingulum. Our study aimed to investigate regionally specific abnormalities of the fornix and cingulum in schizophrenia using diffusion tensor imaging (DTI). We determined the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) profiles along the fornix and cingulum tracts using a fibertracking technique and a brain mapping algorithm, the large deformation diffeomorphic metric mapping (LDDMM), in the DTI scans of 33 patients with schizophrenia and 31 age-, gender-, and handedness-matched healthy controls. We found that patients with schizophrenia showed reduction in FA and increase in RD in bilateral fornix, and increase in RD in left anterior cingulum when compared to healthy controls. In addition, tract-based analysis revealed specific loci of these white matter differences in schizophrenia, that is, FA reductions and AD and RD increases occur in the region of the left fornix further from the hippocampus, FA reductions and RD increases occur in the rostral portion of the left anterior cingulum, and RD and AD increases occur in the anterior segment of the left middle cingulum. In patients with schizophrenia, decreased FA in the specific loci of the left fornix and increased AD in the right cingulum adjoining the hippocampus correlated with greater severity of psychotic symptoms. These findings support precise disruptions of limbic-cortical integrity in schizophrenia and disruption of these structural networks may contribute towards the neural basis underlying the syndrome of schizophrenia and clinical symptomatology.  相似文献   
999.
Nanoporous sol–gel glasses were used as host materials for the encapsulation of apomyoglobin, a model protein employed to probe in a rational manner the important factors that influence the protein conformation and stability in silica‐based materials. The transparent glasses were prepared from tetramethoxysilane (TMOS) and modified with a series of mono‐, di‐ and tri‐substituted alkoxysilanes, RnSi(OCH3)4?n (R = methyl‐, n = 1; 2; 3) of different molar content (5, 10, 15%) to obtain the decrease of the siloxane linkage (? Si? O? Si? ). The conformation and thermal stability of apomyoglobin characterized by circular dichroism spectroscopy (CD) was related to the structure of the silica host matrix characterized by 29Si MAS NMR and N2 adsorption. We observed that the protein transits from an unfolded state in unmodified glass (TMOS) to a native‐like helical state in the organically modified glasses, but also that the secondary structure of the protein was enhanced by the decrease of the siloxane network with the methyl modification (n = 0 < n = 1 < n = 2 < n = 3; 0 < 5 < 10 < 15 mol %). In 15% trimethyl‐modified glass, the protein even reached a maximum molar helicity (?24,000 deg. cm2 mol?1) comparable to the stable folded heme‐bound holoprotein in solution. The protein conformation and stability induced by the change of its microlocal environment (surface hydration, crowding effects, microstructure of the host matrix) were discussed owing to this trend dependency. These results can have an important impact for the design of new efficient biomaterials (sensors or implanted devices) in which properly folded protein is necessary. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 895–906, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号